Uncertainty Management for On-Line Optimisation of a POMDP-Based Large-Scale Spoken Dialogue System
نویسندگان
چکیده
The optimization of dialogue policies using reinforcement learning (RL) is now an accepted part of the state of the art in spoken dialogue systems (SDS). Yet, it is still the case that the commonly used training algorithms for SDS require a large number of dialogues and hence most systems still rely on artificial data generated by a user simulator. Optimization is therefore performed off-line before releasing the system to real users. Gaussian Processes (GP) for RL have recently been applied to dialogue systems. One advantage of GP is that they compute an explicit measure of uncertainty in the value function estimates computed during learning. In this paper, a class of novel learning strategies is described which use uncertainty to control exploration on-line. Comparisons between several exploration schemes show that significant improvements to learning speed can be obtained and that rapid and safe online optimisation is possible, even on a complex task.
منابع مشابه
On-Line Learning of a Persian Spoken Dialogue System Using Real Training Data
The first spoken dialogue system developed for the Persian language is introduced. This is a ticket reservation system with Persian ASR and NLU modules. The focus of the paper is on learning the dialogue management module. In this work, real on-line training data are used during the learning process. For on-line learning, the effect of the variations of discount factor (g) on the learning speed...
متن کاملOn-Line Learning of a Persian Spoken Dialogue System Using Real Training Data
The first spoken dialogue system developed for the Persian language is introduced. This is a ticket reservation system with Persian ASR and NLU modules. The focus of the paper is on learning the dialogue management module. In this work, real on-line training data are used during the learning process. For on-line learning, the effect of the variations of discount factor (g) on the learning speed...
متن کاملThe Hidden Information State model: A practical framework for POMDP-based spoken dialogue management
This paper explains how Partially Observable Markov Decision Processes (POMDPs) can provide a principled mathematical framework for modelling the inherent uncertainty in spoken dialogue systems. It briefly summarises the basic mathematics and explains why exact optimisation is intractable. It then describes in some detail a form of approximation called the Hidden Information State model which d...
متن کاملPOMDP-based Statistical Spoken Dialogue Systems: a Review
Statistical dialogue systems are motivated by the need for a data-driven framework that reduces the cost of laboriously hand-crafting complex dialogue managers and that provides robustness against the errors created by speech recognisers operating in noisy environments. By including an explicit Bayesian model of uncertainty and by optimising the policy via a reward-driven process, partially obs...
متن کاملMarkov Decision Processes with Continuous Observations for Dialogue Management
This work shows how a spoken dialogue system can be represented as a Partially Observable Markov Decision Process (POMDP) with composite observations consisting of discrete elements representing dialogue acts and continuous components representing confidence scores. Using a testbed simulated dialogue management problem and recently developed optimisation techniques, we demonstrate that this con...
متن کامل